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Introduction

 Bilateral filtering – very popular algorithm; smooths 

homogenous areas; preserves edges; non-iterative 

approach; fast execution; does not filter photon-limited 

images, adding hallo artifacts [1, 2];

 Exemplary applications in medical imaging:

 Low dose CT noises – removed by iterative bilateral 

filtering with neural network (JBFnet) - 112 tunable 

parameters per image block; PSRN ~46.8 dB, SSIM ~ 

0.9770 [3];

 CT images in dentistry - bilateral filter + wavelet 

transform; more computationally demanding [4]; another 

solution - biltareal filter + Bayes shrinkage rule; also 

computationally demanding [5];

 Ischemic posterior fossa CT images – bilateral filter leads 

to PSNR 32.95 dB, SSIM – 0.9749 [6].
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Introduction

 Exemplary applications in medical imaging:

 CT images of general type – bilateral filter shows 25% less 

efficiency than the selective mean filter [7];

 An attempt for better preservation on the smaller details in 

CT images with bilateral filter – SNR 24.4 [8];

 Low-dose CT image filtering – 3-dimensional cross-

directional bilateral filter [9] – better than model-based 

reconstruction (28.5% increase in resolution);

 Another study on the bilateral filter, applied over CT images –

PSNR of ~32 dB.

 Often the bilateral filter is used without additional tuning of 

its parameters or as a combination with other methods for 

specific tasks.

 The main aim of the current work is to propose a general 

optimization procedure for the bilateral filter in its original 

form [1], when applied over CT images with Additive 

White Gaussian Noise (AWGN).
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Proposed 
Optimization

 Principle of operation of the bilateral filter
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 In (3) and (4), (i0, j0) falls within the center of the area

<P’,Q’>.
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Fig. 1. Proposed optimization procedure 
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 Experimental setup:

 Testing environment: Intel Xeon E5-1620 CPU 4 cores, 

3.6 GHz, 64 GB RAM, 2 TB 7200 rpm HDD. Software 

GNU Octave v. 6.1.0 over 64-bit MS Windows 10 

Professional. Test images - 103 from DeepLesion dataset 

[12]; 512x512 pixels, 16 bpp. Noised with AWGN at 3 

levels - σ2 = 0.001, 0.01 and 0.1.

 Measured parameters:

 At σ2 = 0.001 – tried ranges Nd ∈ [1, 10] and Nr ∈ [2570, 

25700]
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Fig. 2. Finding the optimal Nd and Nr for σ2 = 0.001

a b

Fig. 3. Filtering times at 

various Nd and Nr for σ2 = 

0.001



Experimental 
Results

9

σ2 Filter PSNR, dB SSIM t, sec

0.001
Bilateral 51.25 0.9965 67.2880

Gaussian 30.00 0.7927 0.0055

Average 39.50 0.9296 0.0082

0.01
Bilateral 42.66 0.9860 257.6300

Gaussian 20.00 0.2836 0.0057

Average 29.52 0.5777 0.0082

0.1
Bilateral 19.28 0.2519 162.3100

Gaussian 11.18 0.0485 0.0074

Average 20.44 0.1493 0.0081

The optimal set of parameters are as follows:

•at σ2 = 0.001 – Nd = 5, Nr = 12 850;

•at σ2 = 0.01 – Nd = 10, Nr = 25700;

•at σ2 = 0.1 – Nd = 8, Nr = 25700.

The average PSNR, SSIM and filtering times t for the bilateral, Gaussian and 

average filter are given in Table I.

Table I. Average Filtering Efficiency Parameters
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Fig. 4. Single CT slice: a – original, b –

noisy with σ2 = 0.001, and filtered by c –

bilateral filter, d – Gaussian filter, and e –

average filter



Discussion

 During the optimization procedure, it is observed that the variation of 

PSNR and SSIM within the whole range of applicable Nd and Nr is not 

negligible. For σ2 = 0.001, the average PSNR is 45.09 dB with a deviation 

(as absolute difference) of 13.81 dB (Fig. 2.a). SSIM in the same time 

deviates around 0.9822 within an interval of 0.1124 (Fig. 2.b). Filtering 

time changes almost linearly with the increase of Nd from 3.31 sec up to 

259.64 sec, regardless of the change of Nr (Fig. 3). A bit different is the 

distribution of PSNR for σ2 = 0.01 – its average value is 31.90 dB with an 

absolute  deviation of 21.14 dB, and SSIM varies around 0.7571 with 

0.6830, that is there is more smooth increase for both these parameters 

over both the Nd and Nr parameters. Global maximum in filtration 

efficiency is achieved for the very end of the tested interval. The change 

of filtration time is again close to linear, covering virtually the same 

range as that for σ2 = 0.001. When σ2 is 0.1, PSNR falls to an average 

value of 14.32 dB and it varies with 8.36 dB, depending more on Nr
(almost linearly over its whole range) and very slightly on Nd, just at the 

beginning of its interval change, after which a saturation zone is formed. 

Similar is the distribution of SSIM on (Nd, Nr) with total variation of 

0.2072 and an average of just 0.1091 due to the extremely strong 

deteriorations in the image in this instance. Filtering time stays within 

the same boundaries for this case as well.
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Discussion

 With the exception of the slightly higher PSNR, obtained by 

the average filter for σ2 = 0.1, a difference of 1.16 dB with 

that of the bilateral filter, in all other cases both the PSNR 

and SSIM for the latter are highest (Table I). On a second 

place is the average filter (with PSNR drop of around 12 dB 

for σ2 = 0.001 and 0.01, and increasing difference in SSIM 

up to 0.4803 for σ2 = 0.01), followed by the Gaussian filter 

with an average difference of around 9 dB for the PSNR and 

SSIM offset varying between 0.1 and 0.3. These numerical 

observations are supported by the visual inspection of 

filtered images (Fig. 4). The average filter has an effect 

over homogenous areas of the image of clearing out most 

of the noise disturbances (Fig. 4.e), which is also true for 

the bilateral filter (fig. 4.c). The observable difference is 

the better preservation of the edges of objects in the 

second case. The Gaussian filter, on the other hand, 

preserves most of the smaller details from the objects in 

the image, but significant amount of noise deteriorations 

could still be seen (Fig. 4.d).
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Discussion

 Processing time is about 4 orders of a magnitude higher for the 

bilateral filter than that of the Gaussian and average filter (Table I). 

The spread of the bilateral filter Nd, which varies with the change of 

σ2 from one to another optimal configuration, affects its filtering 

time in direct proportion (linearly). At σ2 = 0.001 it takes 256.68 

μs/px (microseconds per pixel) on average for the bilateral filter to 

accomplish it tasks. In the same time the processing times for the 

Gaussian filter and the average filter are 0.02 μs/px and 0.03 μs/px, 

respectively. Increasing σ2 to 0.01 leads to increase of t up to 982.78 

μs/px for the bilateral filter, while  the filtering times of the 

Gaussian and average filters stay almost unchanged – again 

approximately equal to 0.02 μs/px and 0.03 μs/px, respectively. 

And in the third case of σ2 = 0.1, there is slight increase of t for the 

Gaussian filter up to 0.03 μs/px – a result mainly due to a light shift 

of the CPU load during computation, rather than the actual number 

of arithmetic operations performed, and the same t for the average 

filter – 0.03 μs/px as in the previous two cases. At that same noise 

level with a variance, equal to 0.1, the bilateral filter needs 619.16 

μs/px – an intermediate value in comparison to the first two test 

scenarios.
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Conclusions

 In this paper an optimization procedure for finding proper 

values of the spread and intensity range parameters of the 

bilateral filter is proposed, depending on the level of 

AWGN noise present in the input images, aiming the 

highest possible PSNR and SSIM of the output images. 

Objective quality parameters depend on both the spread 

and intensity range, which dependency becomes stronger 

with the increase of the variance of the present noise. 

Applying the optimization procedure over a slice of a CT 

image and filtering subsequently all slices provides an 

efficient way of getting the highest quality for the whole 

set. This approach is considered applicable also for other 

types of images, such as Magnetic Resonance Images, 

multispectral and hyperspectral images and others. Future 

work would reveal its applicability not only for different 

kind of images, but also advancing further the optimization 

for different kind of noises, using suitable adapted forms of 

the filter, considering also the work of other authors.
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